Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Strong gravitational lenses with two background sources at widely separated redshifts are a promising independent probe of cosmological parameters. We can use these systems, known as double-source-plane lenses (DSPLs), to measure the ratio (β) of angular-diameter distances of the sources, which is sensitive to the matter density (Ωm) and the equation-of-state parameter for dark-energy (w). However, DSPLs are rare and require high-resolution imaging and spectroscopy for detection, lens modeling, and measuringβ. Here, we report only the second DSPL ever used to measure cosmological parameters. We model the DSPLAGEL150745+052256 from the ASTRO 3D Galaxy Evolution with Lenses (AGEL) survey using Hubble Space Telescope/Wide-Field Camera 3 imaging and Keck Cosmic Web Imager spectroscopy. The spectroscopic redshifts for the deflector and two sources inAGEL1507 arezdefl= 0.594,zS1 = 2.163, andzS2= 2.591. We measure a stellar velocity dispersion ofσobs = 109 ± 27 km s−1for the nearer source (S1). Usingσobsfor the main deflector (from literature) and S1, we test the robustness of our DSPL model. We measure forAGEL1507 and infer Ωm for ΛCDM cosmology. CombiningAGEL1507 with the published model of the Jackpot lens improves the precision on Ωm(ΛCDM) andw(wCDM) by ∼10%. The inclusion of DSPLs significantly improves the constraints when combined with Planck’s cosmic microwave background observations, enhancing the precision onwby 30%. This paper demonstrates the potential constraining power of DSPLs and their complementarity to other standard cosmological probes. Tighter future constraints from larger DSPL samples discovered from ongoing and forthcoming large-area sky surveys would provide insights into the nature of dark energy.more » « lessFree, publicly-accessible full text available September 16, 2026
-
We study the spatially resolved outflow properties of CSWA13, an intermediate-mass (M* = 109M⊙), gravitationally lensed star-forming galaxy atz= 1.87. We use Keck/KCWI to map outflows in multiple rest-frame UV interstellar medium (ISM) absorption lines, along with fluorescent Siii* emission, and nebular emission from Ciii] tracing the local systemic velocity. The spatial structure of the outflow velocity mirrors that of the nebular kinematics, which we interpret to be a signature of a young galactic wind that is pressurizing the ISM of the galaxy but is yet to burst out. From the radial extent of Siii* emission, we estimate that the outflow is largely encapsulated within 3.5 kpc. We explore the geometry (e.g., patchiness) of the outflow by measuring the covering fraction at different velocities, finding that the maximum covering fraction is at velocitiesv ≃ −150 km s−1. Using the outflow velocity (vout), radius (R), column density (N), and solid angle (Ω) based on the covering fraction, we measure the mass-loss rate and mass loading factor for the low-ionization outflowing gas in this galaxy. These values are relatively large and the bulk of the outflowing gas is moving with speeds less than the escape velocity of the galaxy halo, suggesting that the majority of the outflowing mass will remain in the circumgalactic medium and/or recycle back into the galaxy. The results support a picture of high outflow rates transporting mass and metals into the inner circumgalactic medium, providing the gas reservoir for future star formation.more » « lessFree, publicly-accessible full text available March 3, 2026
-
While quiescent galaxies have comparable amounts of cool gas in their outer circumgalactic medium (CGM) compared to star-forming galaxies, they have significantly less interstellar gas. However, open questions remain on the processes causing galaxies to stop forming stars and stay quiescent. Theories suggest dynamical interactions with the hot corona prevent cool gas from reaching the galaxy, therefore predicting the inner regions of quiescent galaxy CGMs are devoid of cool gas. However, there is a lack of understanding of the inner regions of CGMs due to the lack of spatial information in quasar-sightline methods. We present integral-field spectroscopy probing 10–20 kpc (2.4–4.8 Re) around a massive quiescent galaxy using a gravitationally lensed star-forming galaxy. We detect absorption from Magnesium (MgII) implying large amounts of cool atomic gas (108.4–109.3 M⊙ with T~104 Kelvin), in comparable amounts to star-forming galaxies. Lens modeling of Hubble imaging also reveals a diffuse asymmetric component of significant mass consistent with the spatial extent of the MgII absorption, and offset from the galaxy light profile. This study demonstrates the power of galaxy-scale gravitational lenses to not only probe the gas around galaxies, but to also independently probe the mass of the CGM due to it's gravitational effect.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Over the past few years alone, the lensing community has discovered thousands of strong lens candidates, and spectroscopically confirmed hundreds of them. In this time of abundance, it becomes pragmatic to focus our time and resources on the few extraordinary systems, in order to most efficiently study the Universe. In this paper, we present such a system: DESI-090.9854-35.9683, a cluster-scale lens atzl= 0.49, with seven observed lensed sources around the core, and additional lensed sources further out in the cluster. From the number and the textbook configuration of the lensed images, a tight constraint on the mass potential of the lens is possible. This would allow for detailed analysis on the dark and luminous matter content within galaxy clusters, as well as a probe into dark energy and high-redshift galaxies. We present our spatially resolved kinematic measurements of this system from the Very Large Telescope Multi Unit Spectroscopic Explorer, which confirm five of these source galaxies (in ascending order, atzs= 0.962, 0.962, 1.166, 1.432, and 1.432). With previous Hubble Space Telescope imaging in the F140W and F200LP bands, we also present a simple flux-based lens model consisting of two power-law profiles that, for a cluster lens, well models the five lensed arc families with redshifts. We determine the mass to beM(<θE) = 4.78 × 1013M⊙for the primary mass potential. From the model, we extrapolate the redshift of one of the two source galaxies not yet spectroscopically confirmed to be at .more » « less
-
Abstract We study the kinematics of the interstellar medium (ISM) viewed “down the barrel” in 20 gravitationally lensed galaxies during cosmic noon (z= 1.5–3.5). We use moderate-resolution spectra (R∼ 4000) from Keck’s Echellette Spectrograph and Imager and Magellan/MagE to spectrally resolve the ISM absorption in these galaxies into ∼10 independent elements and use double Gaussian fits to quantify the velocity structure of the gas. We find that the bulk motion of gas in this galaxy sample is outflowing, with average velocity centroid km s−1(±111 km s−1scatter) measured with respect to the systemic redshift. A total of 16 out of the 20 galaxies exhibit a clear positive skewness, with a blueshifted tail extending to ∼ −500 km s−1. We examine scaling relations in outflow velocities with galaxy stellar mass and star formation rate, finding correlations consistent with a momentum-driven wind scenario. Our measured outflow velocities are also comparable to those reported for FIRE-2 and TNG50 cosmological simulations at similar redshift and galaxy properties. We also consider implications for interpreting results from lower-resolution spectra. We demonstrate that while velocity centroids are accurately recovered, the skewness, velocity width, and probes of high-velocity gas (e.g.,v95) are subject to large scatter and biases at lower resolution. We find thatR≳ 1700 is required for accurate results for the gas kinematics of our sample. This work represents the largest available sample of well-resolved outflow velocity structure atz> 2 and highlights the need for good spectral resolution to recover accurate properties.more » « less
-
Abstract Imaging data is the principal observable required to use galaxy-scale strong lensing in a multitude of applications in extragalactic astrophysics and cosmology. In this paper, we develop Lensing Exposure Time Calculator (L ensing ETC; https://github.com/ajshajib/LensingETC ) to optimize the efficiency of telescope-time usage when planning multifilter imaging campaigns for galaxy-scale strong lenses. This tool simulates realistic data tailored to specified instrument characteristics and then automatically models them to assess the power of the data in constraining lens model parameters. We demonstrate a use case of this tool by optimizing a two-filter observing strategy (in the IR and ultraviolet-visual (UVIS)) within the limited exposure time per system allowed by a Hubble Space Telescope (HST) Snapshot program. We find that higher resolution is more advantageous to gain constraining power on the lensing observables, when there is a trade-off between signal-to-noise ratio and resolution; for example, between the UVIS and IR filters of the HST. We also find that, whereas a point-spread function (PSF) with sub-Nyquist sampling allows the sample mean for a model parameter to be robustly recovered for both galaxy–galaxy and point-source lensing systems, a sub-Nyquist-sampled PSF introduces a larger scatter than a Nyquist-sampled one in the deviation from the ground truth for point-source lens systems.more » « less
-
Abstract We present spectroscopic confirmation of candidate strong gravitational lenses using the Keck Observatory and Very Large Telescope as part of our ASTRO 3D Galaxy Evolution with Lenses ( AGEL ) survey. We confirm that (1) search methods using convolutional neural networks (CNNs) with visual inspection successfully identify strong gravitational lenses and (2) the lenses are at higher redshifts relative to existing surveys due to the combination of deeper and higher-resolution imaging from DECam and spectroscopy spanning optical to near-infrared wavelengths. We measure 104 redshifts in 77 systems selected from a catalog in the DES and DECaLS imaging fields ( r ≤ 22 mag). Combining our results with published redshifts, we present redshifts for 68 lenses and establish that CNN-based searches are highly effective for use in future imaging surveys with a success rate of at least 88% (defined as 68/77). We report 53 strong lenses with spectroscopic redshifts for both the deflector and source ( z src > z defl ), and 15 lenses with a spectroscopic redshift for either the deflector ( z defl > 0.21) or source ( z src ≥ 1.34). For the 68 lenses, the deflectors and sources have average redshifts and standard deviations of 0.58 ± 0.14 and 1.92 ± 0.59 respectively, and corresponding redshift ranges of z defl = 0.21–0.89 and z src = 0.88–3.55. The AGEL systems include 41 deflectors at z defl ≥ 0.5 that are ideal for follow-up studies to track how mass density profiles evolve with redshift. Our goal with AGEL is to spectroscopically confirm ∼100 strong gravitational lenses that can be observed from both hemispheres throughout the year. The AGEL survey is a resource for refining automated all-sky searches and addressing a range of questions in astrophysics and cosmology.more » « less
-
Abstract Gravitational lenses can magnify distant galaxies, allowing us to discover and characterize the stellar populations of intrinsically faint, quiescent galaxies that are otherwise extremely difficult to directly observe at high redshift from ground-based telescopes. Here, we present the spectral analysis of two lensed, quiescent galaxies atz≳ 1 discovered by theASTRO 3D Galaxy Evolution with Lensessurvey:AGEL1323 (M*∼ 1011.1M⊙,z= 1.016,μ∼ 14.6) andAGEL0014 (M*∼ 1011.5M⊙,z= 1.374,μ∼ 4.3). We measured the age, [Fe/H], and [Mg/Fe] of the two lensed galaxies using deep, rest-frame-optical spectra (S/N ≳40 Å−1) obtained on the Keck I telescope. The ages ofAGEL1323 andAGEL0014 are Gyr and Gyr, respectively, indicating that most of the stars in the galaxies were formed less than 2 Gyr after the Big Bang. Compared to nearby quiescent galaxies of similar masses, the lensed galaxies have lower [Fe/H] and [Mg/H]. Surprisingly, the two galaxies have comparable [Mg/Fe] to similar-mass galaxies at lower redshifts, despite their old ages. Using a simple analytic chemical evolution model connecting the instantaneously recycled element Mg with the mass-loading factors of outflows averaged over the entire star formation history, we found that the lensed galaxies may have experienced enhanced outflows during their star formation compared to lower-redshift galaxies, which may explain why they quenched early.more » « less
-
ABSTRACT We have entered a new era where integral-field spectroscopic surveys of galaxies are sufficiently large to adequately sample large-scale structure over a cosmologically significant volume. This was the primary design goal of the SAMI Galaxy Survey. Here, in Data Release 3, we release data for the full sample of 3068 unique galaxies observed. This includes the SAMI cluster sample of 888 unique galaxies for the first time. For each galaxy, there are two primary spectral cubes covering the blue (370–570 nm) and red (630–740 nm) optical wavelength ranges at spectral resolving power of R = 1808 and 4304, respectively. For each primary cube, we also provide three spatially binned spectral cubes and a set of standardized aperture spectra. For each galaxy, we include complete 2D maps from parametrized fitting to the emission-line and absorption-line spectral data. These maps provide information on the gas ionization and kinematics, stellar kinematics and populations, and more. All data are available online through Australian Astronomical Optics Data Central.more » « less
An official website of the United States government
